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Bow-like free surfaces under gravity

B y E. O. Tuck1 and A. J. Roberts2

1Department of Applied Mathematics, The University of Adelaide,
South Australia 5005, Australia

2Department of Mathematics and Computing, University of Southern Queensland,
Toowoomba, Queensland 4530, Australia

The nonlinear free-surface flow near the extreme bow of a ship is a classical hy-
drodynamic example of a violent surface motion. The nature of these bow flows is
discussed, and previous studies on them are reviewed, with emphasis on splashes and
their elimination. Some new examples are provided of bow-like flows without splashes
that can be computed by inverse means. In effect, the shape of the free surface is
given, and the bow shape that generates this free surface is determined. This exact
solution-generating procedure, which dates at least from 1901, is in principle capable
of being turned into a practical design tool. Although this point has not been yet
reached, some of the examples given here are not unlike the flow at the bow of a
bluff ship.

1. Introduction

The flow at the bow of a ship is an important example of a highly nonlinear large-
displacement free-surface flow. Most ship bows create a splash, sometimes massive
and overturning directly in front of the ship to create a large foaming zone, as with
the bluff bow of a barge or supertanker, but sometimes thin and fountain-like, rising
high and falling sideways with little apparent effect on the water ahead, as with a
fine yacht bow. The insult caused to the calm still water ahead of a ship on suddenly
meeting a rapidly moving object seems (almost) always to produce a splash.

The nonlinear nature of bow splashes makes for a very difficult analytical and
computational task if one attempts to provide a theoretical description of the flow
about a ship. Success in modelling bow splashes would be of some technological
interest; splashes are undesirable on many grounds, being a source of drag and noise,
to name just two of these grounds. This is so particularly for bluff bows, where the
flow is approximately two-dimensional.

It is only very recently (Dias & Vanden-Broeck 1993) that some limited progress
has been made in computing actual two-dimensional splashing flows. One difficulty
with strictly two-dimensional bow flows is that after the splash is generated and
rises into the air, there is nowhere safe for it to go when it later falls under gravity,
and artificial means must be adopted, like letting it fall freely for ever on another
Riemann sheet (see Dias & Tuck 1993; Jenkins 1994). This is necessary to avoid
having to model what really happens in practice, but what is virtually impossible
to treat mathematically, namely violent contact of the splash with the water ahead
of the bow to produce a foaming rotational ‘forward wake’ (Mori 1984). Another
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possibility is to divert the splash, e.g. over the top of the bow, as in Tuck (1997);
some other artificial splash-absorbers are discussed in Tuck (1991).

Much more progress can be made mathematically and computationally by ignoring
the splash, or by assuming that the bow shape is somehow such that there really
is no splash. At this stage it is still somewhat of a mystery how some of the very
successful recent numerical codes (e.g. Raven 1992) for flow about actual three-
dimensional ships can appear to be numerically convergent in spite of the fact that
they assume no splash. It is probable that in these cases the splash occurs on a length
scale that is small compared to the coarse numerical grid used; if the grid were refined
further, the need for detailed splash analysis might become apparent (see Roberts
1987). Attempts are being made (Scullen & Tuck 1995) to develop codes which will
eventually allow such fine flow details to be incorporated.

Returning to the two-dimensional case, the issue of whether a bow flow can ever
be without a splash has received some attention recently. Farrow & Tuck (1995)
have shown that there can be splashless bow flows providing that the initial contact
between free surface and bow is tangential. This is an unlikely event to occur in
practice, and can only happen if the ‘bow’ has a projection that slopes downward
at the point of contact. This confirms results of Madurasinghe & Tuck (1986). For
more conventional bluff bows, it is likely that the water rises to a stagnation point
at attachment, and in that case Farrow & Tuck (1995) have provided numerical
evidence to suggest that a splash must always occur, contradicting earlier somewhat
less accurate work by Tuck & Vanden-Broeck (1984) and Madurasinghe (1988).

The linearized theory of two-dimensional planing surfaces (ships of small draft)
provides some guidance in this bow-splash matter. That theory is analogous to thin-
airfoil theory (Newman 1977, p. 179), and the bow splash is analogous to the leading-
edge singularity of an airfoil. It is possible to design a specially cambered airfoil to
have ‘shock-free entry’, i.e. to avoid the leading edge singularity, and this is equivalent
to the tangential-attachment splash-free bow (Cumberbatch 1958). On the other
hand, so long as there is a splash for a planing surface, it is a challenging task to
correlate the size of the leading-edge singularity with the size of the splash, and there
has been recent progress with that task (Tuck 1994, 1995).

In the remainder of the present paper, we turn to a very different procedure for
computing splash-free bow flows. If there are such flows where the contact is via
a stagnation point, then the free surface, while being a large displacement of the
undisturbed plane, will nevertheless be a smooth continuous curve. In that case,
surely it must be possible to determine the flow via inverse means, where the free
surface is specified, and the bow shape that generates such a free surface is to be
determined. Success in such an objective would provide a design procedure for an
optimum bluff bow shape.

We now discuss such inverse procedures, but note immediately that we have not
been able to determine any examples which are truly ship-like, in the sense of allowing
for an effective uniform stream far from the body. Hence the existence of splashless
bow flows with that far-field property and a stagnation point at attachment is still
an open question.

2. Inverse methods

Inverse methods for generating steady two-dimensional irrotational flows that sat-
isfy the free-surface boundary condition exactly, have a long history, surveyed by
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Wehausen & Laitone (1960, pp. 736–740). Although equivalent methods have been
rediscovered many times since, the first statement of the method appears to be due to
Sautreaux (1901). The following is in the spirit of Sautreaux’s original formulation;
other formulations are obtainable by elementary changes of variable.

If z = x + iy is a complex coordinate and f = φ + iψ a complex velocity poten-
tial, irrotationality in an incompressible fluid demands that z and f be analytically
related. We choose to seek z = z(f) in ψ 6 0, and write

z(f) = X(f) + iY (f), (2.1)

where X(f), Y (f) are analytic functions connected for all f by

X ′(f)2 + Y ′(f)2 + [2gY (f)]−1 = 0. (2.2)

for some constant g. If X and Y are real and g denotes the acceleration of gravity,
equation (2.2) is the free-surface boundary condition; however, this is not always the
case.

More generally, (2.1) is a somewhat arbitrary decomposition of z into two parts,
and does not necessarily imply that X and Y are real and imaginary parts of z,
respectively. However, suppose they are real on some or all of the streamline ψ = 0.
That is, suppose that there exists a range of real values of φ such that X(φ) and Y (φ)
are both real. Then, for such φ values, (2.2) guarantees that the pressure (excess over
atmospheric, with ρ the constant fluid density)

p = −ρ
[

1
2

∣∣∣∣dfdz

∣∣∣∣2 + gy

]
= −1

2ρ
[(
X ′(f)2 + Y ′(f))2)−1

+ 2gY (f)
]

(2.3)

vanishes when f = φ is real. Thus, any choice of X(f) and Y (f) satisfying (2.2)
generates an exact free surface whenever both are real. The converse is not necessarily
true.

Most authors (in effect) fix Y (f), and use (2.2) as an explicit quadrature formula
for X(f), namely

X(f) =
∫

[−Y ′(f)2 − (2gY (f))−1]1/2 df. (2.4)

However (c.f. Vanden-Broeck et al. 1978), (2.2) may also be written(
dY
df

)2

+
1

2gY
= −X ′(f)2, (2.5)

and interpreted as a nonlinear first-order ordinary differential equation for Y = Y (f),
given X(f). In either method, (2.4) or (2.5), there is a degree of freedom associated
with the additive constant in (2.4) or the initial condition in (2.5). However, the
additive constant in (2.4) represents a mere shift in origin and can be ignored, whereas
a more complicated range of possibilities exists as we vary the initial condition to be
used in solving the differential equation (2.5).

Portions of the streamline ψ = ψ0 on which X and Y are not both real can be
interpreted as a solid body, to which the free part of the streamline is attached.
In this paper we shall be concerned with streamlines ψ = 0, of which a portion
(generally φ > φ0 for some φ0) is free, and the remainder, φ < φ0, is solid.
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Furthermore, in most cases both the free and solid portions will be asymptotically
straight lines, i.e.

y → (tan θ±)x as φ→ ±∞, (2.6)

where θ± are the angles these lines make with the x-axis. Indeed, in most cases, our
examples have

θ+ − θ− = 2
3π, (2.7)

and

z(f)→ Aeiθ+f2/3, as |f | → ∞, (2.8)

for some real positive constant A. These flows thus appear as flows in a 120◦ sector,
one arm of which is solid and the other free. However, the sector is distorted in various
ways near its corner (c.f. Vanden-Broeck & Tuck 1994), and we are particularly
interested in the manner in which the free surface joins the body, as a model of the
corresponding attachments at the bow and stern of a ship.

3. Two-thirds power

The choice

Y (f) = −Bf2/3, (3.1)

has been tried by a number of authors, with B constant. The only candidate free-
surface streamline is ψ = 0, φ > 0 and B is then necessarily real. Now (2.1) gives

X ′2 =
(
−4
g
B2 +

1
2gB

)
f−2/3, (3.2)

so that X can be real on f ∈ R+ only if

0 < B < (9/8g)1/3. (3.3)

Defining

C =
(

9
8gB

−B2
)1/2

, (3.4)

then

X(f) = Cf2/3, (3.5)

that is

z(f) = (C − iB)f2/3. (3.6)

Although, in principle, solutions with C < 0 are possible, these have ‘water above
air’, and for physically acceptable flows we can confine attention to C > 0. Now as
B ranges over the interval (3.3), C decreases from +∞ to 0, and the free surface is
the straight line

y = −(B/C)x, (3.7)

which (as B varies from zero) varies from horizontal to vertical. Meanwhile, the
remainder of the streamline ψ = 0 (i.e. that for φ < 0) is the straight line at 120◦ to
the free surface, as in figure 1.

Since we have obtained the simple expression (3.5) for X(f) by integration, the
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(a) (b) (c)

Figure 1. Sample exact free-surface flows with X ∝ Y ∝ f2/3: (a) B → 0, C →∞; (b)
0 < B < (g/2g)1/3, ∞ > C > 0; (c) B = (g/2g)1/3, C = 0.

simple expression (3.1) for Y (f) can be retrieved by solving the differential equa-
tion (2.5) with that choice of X(f), i.e.(

dY
df

)2

+
1

2gY
= −4

g
C2f−2/3. (3.8)

It is indeed clear by inspection that (3.1) is the solution of (3.8) satisfying the initial
condition

Y = 0 at f = 0, (3.9)
providing B and C are connected by (3.4). However, it is not as obvious what is the
solution of (3.8) subject to any other initial condition; in recent unpublished work,
we have obtained the general solution of (3.8), but have not identified any useful
special cases other than (3.1). In particular, the solution subject to Y (0) = A is not
Y = A−Bf2/3.

But in any case, let us pursue the choice

Y (f) = A−Bf2/3, (3.10)

for some constant A. Then (2.2) gives

X ′2 = −4
9
B2f−2/3 − 1

2g
(
A−Bf2/3)−1

= − 1
2g
[(

1− 8
9gB

3)+ 8
9gB

2Af−2/3] (A−Bf2/3)−1
. (3.11)

We integrate (3.11) in the general case later; meanwhile let us note the interesting
special case

B = (9/8g)1/3. (3.12)
The requirement that X and Y be simultaneously real on ψ = 0 can be met only if
A > 0 and φ > (A/B)3/2, that is Y < 0. Now if (3.12) holds, (3.11) integrates to

X = 2A1/2 (Bf2/3 −A)1/2 (3.13)

⇒ z = 2(−AY )1/2 + iY, (3.14)

where Y is given by (3.10). The free surface is the parabola

y = − 1
4A

x2. (3.15)

In fact, it is easy to show that fluid particles on this parabolic free-surface streamline
are falling freely in a true ballistic trajectory with a constant horizontal velocity of
magnitude (g/8A)1/2.
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–2

–1

0

–2 –1 0 1 2

Figure 2. Bow flow (3.16) showing the vertical front of the bow, the 240◦ submerged corner,
and the parabolic free-surface. Plotted here, and in the subsequent figures, are the streamlines
ψ = −(0 : 0.5 : 2) for a potential range of approximately −15 < φ < 5.

The free surface is the portion φ > (A/B)3/2 of the streamline ψ = 0. The portion
0 < φ < (A/B)3/2 is a vertical wall x = 0 since (3.14) implies that z is pure imaginary
in this range. This wall extends from the origin down to Y = −A, at which point
there is a 240◦ corner flow, i.e. the flow direction changes suddenly from vertical to
30◦ to the horizontal downward. For φ < 0, there is a curved body shape, and as
φ→ −∞, this body asymptotes to a 30◦ upward straight line.

Figure 2 shows the flow, in non-dimensional form, noting that if Z = z/A and
F = (A/B)3/2f , (3.14) becomes just

Z = 2
(−1 + F 2/3)1/2 + i

(
1− F 2/3) . (3.16)

In effect, all solutions of this type are recoverable by rescaling the solution with
A = B = 1, g = 9

8 .
Even when (3.12) does not hold, closed-form integration of (3.11) is possible. For

example, if A and B are both positive, then

X =
(

1− γ
γ

)1/2{
[−Y (K − Y )]1/2 +K log

[
(−Y )1/2 + (K − Y )1/2

K1/2

]}
, (3.17)

where
γ = 8

9gB
3, (3.18)

and

K =
A

1− γ . (3.19)

Again, a normalization equivalent to setting A = B = 1 may be performed. The
solution (3.17) is most straightforward to use if γ < 1; note that the limit γ → 1
(K →∞) reproduces the solution (3.13).

As an example, figure 3 shows the solution for γ = 3/4 (K = 4). This is a case
where the body’s lower surface is asymptotically horizontal as φ → −∞. This flow
models (to a limited extent) a finite-draft semi-infinite bow or stern flow for a ship.
However, there is no streaming flow at infinity, and the free surface slopes downward
at 60◦ to the horizontal.

More generally, all members of the family (3.17) have (in the notation of §1)
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–2

–1

0

–3 –2 –1 0 1 2 3

Figure 3. Bow flow (3.17) showing the solid body’s lower surface to be asymptotically
horizontal.

tan θ = −√γ/(1− γ) and (2.7) holds. All members have a body containing a vertical
wall, where the free surface joins the body, with a 240◦ corner at its bottom end,
followed by a curved bottom that asymptotes to a line at 120◦ to the free surface.

There is an apparent singularity in (3.17) where Y = K; however, for γ < 1, so
K > 0, this singularity is not in the region of flow. In general, such a singularity
must be expected wherever X ′2 possesses a simple zero, and many otherwise plausible
choices for Y (f) are unacceptable because of this difficulty.

All flows in the present section are such that the far-field has z as a two-thirds
power of f , or equivalently are such that the velocity at infinity increases like the
one-half power of distance. This they have in common with the splashing flow of
Jenkins (1994) and the flows studied by Vanden-Broeck & Tuck (1994). This being
so, they are not yet capable of immediate application to ship bow flows, where we
would prefer a finite uniform stream at infinity. As a first step toward the latter
objective, let us now examine other power-law flows.

4. Y as a power of X

Inspired by the solution (3.14) in which the free surface is given by the simple
parabolic equation (3.15), we seek solutions of (2.2) for which the free surface has a
power law dependence, namely y = −Axβ. Thus we look for solutions of the form

z = X − iAXβ, (4.1)

where X(f) is real on the free surface ψ = 0, φ > 0. In fact this is a special case of
a procedure discussed by Wilton (1913) and Wehausen & Laitone (1960) enabling
solution with an arbitrary given form for the free surface.

Substituting (4.1) into (2.2) we find that X must be given by the following integral

f =
√

2gA
∫
Xβ/2

√
1 +A2β2X2β−2 dX, (4.2)

or, upon substituting
ξ = AβXβ−1, (4.3)

by

f = B

∫
ξn
√

1 + ξ2 dξ, (4.4)
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

–0.6

–0.4

–0.2

0

Figure 4. Bow flow (4.1) for n = 0, β = 4 showing an unreasonable singularity in the fluid
somewhere in −2 < ψ < −1.5.

–1.5

–1

–0.5

0

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5

Figure 5. Bow flow (4.1) for n = 2, β = 8/5.

where

B2 =
2g

β(β − 1)2(βA)3/(β−1) , (4.5)

and

n =
(4− β)
2(β − 1)

. (4.6)

In fact, the problem can be non-dimensionalized to assign any convenient value to
B and A; we choose B = n+ 2 and A = |β|−1 in the following examples.

For integer n, the integral in (4.4) can be written down explicitly, for example:

n = 0, β = 4 : ξ = X3, f = sinh−1(ξ) + ξ
√

1 + ξ2, (4.7)

n = 1, β = 2 : ξ = X, f = (1 + ξ2)3/2, (4.8)

n = 2, β = 8
5 : ξ = X3/5, f = − 1

2 sinh−1(ξ) + (1
2 + ξ2)ξ

√
1 + ξ2, (4.9)

n = 3, β = 10
7 : ξ = X3/7, f = (− 2

3 + ξ2)(1 + ξ2)3/2 (4.10)

etc. These flows are depicted in figures 4, 2, 5 and 6, respectively.
Observe that the n = 1 flow is precisely a flow already examined in the previous

section; thus this family of solutions generalizes that solution. The n = 0 flow is
inappropriate as a bow flow as it involves a singularity in the fluid flow. The n = 2
and 3 flows can model a bow flow where the bow profile intersects with the horizontal
free-surface at an angle of 5

9π and 7
12π, respectively.

These flows are clearly isolated examples of a one parameter family of solutions
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–1.5

–1

–0.5

0

–3 –2 –1 0 1

Figure 6. Bow flow (4.1) for n = 3, β = 10/7.

given by β varying from 1 to ∞. The general characteristics of this family are that
they possess a bow-like corner flow, the bow being inclined at an angle 2π/(β + 2)
to the asymptotically horizontal free surface. In the far field, the free surface is
asymptotically vertical, whereas the solid body asymptotes to a line inclined at an
upward angle of 30◦ to the horizontal. The singularity at ξ = −i in (4.4) is outside
the flow for β < 2, has moved to be exactly on the body if β = 2, and moves into
the flow for β > 2. Thus, acceptable solutions only occur for 1 < β 6 2, which
corresponds to n > 1. As β → 1+ (large n) the flow tends to the 2/3 power flow (3.6)
discussed earlier.

5. Differential equation

A little used approach to finding solutions to (2.2) is to write it in the form (2.5)
which, given a specified X(f), is a first-order differential equation for Y (f). In con-
junction with this differential equation the initial condition

Y (0) = 0, (5.1)

will be used throughout this section. The more general possibility of Y (0) = K < 0
is not considered.

We also consider only that class of flows obtained by choosing

X(f) = λfα, 0 < α 6 1. (5.2)

On its own this represents a flow in a corner of angle απ radians, and we hope that
this character will hold in the full solution and so represent a bow flow where the
angle which the profile of the bow makes with the horizontal is απ radians. In fact,
this is true provided 0 < α < 2

3 which will thus be the main range of α investigated.
Now, by scaling f , X and Y appropriately we can in effect set

g = 1
2 and A = 1/α, (5.3)

which gives a one parameter family of differential equations to solve. That is, if we
find Y (f) such that (

dY
df

)2

+
1
Y

+ f2α−2 = 0, (5.4)

subject to the initial condition (5.1), then the inverse complex potential

Z(f) =
1
α
fα + iY (f), (5.5)
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represents a fluid flow with a free surface whenever f is real, f > 0 and Y (f) is real.
The only known analytic solutions to (5.4) are the cases α = 1 (see Vitousek 1954)

and α = 2
3 (see §2). For general α we resort to a numerical solution; for example,

see Vanden-Broeck et al. (1978) where the case α = 1
2 is investigated.

(a ) Asymptotic behaviour
It is helpful to obtain a rough picture of the behaviour of the solutions of this

problem. To do this, the asymptotic behaviour as f → 0 and as f → ∞ is given
here.

First consider the range 0 < α < 2
3 . As f → 0 the dY/df term in (5.4) is negligible

and hence
Z(f) ∼ (1/α)fα − if2−2α, f → 0, (5.6)

which is a flow in a corner of απ radians, as desired, but modified by the second
term. In particular, this second term shows that the free surface is

y ∼ −(αx)2(1−α)/α, x→ 0+. (5.7)

As f →∞, the f2α−2 term in (5.5) is negligible and hence

Z(f) ∼ −i
(

3
2f
)2/3

+
1
α
fα, f →∞, (5.8)

which is flow in a 120◦ corner (modified by the fα term) with the free surface
vertically downwards and the boundary of the solid body (f real and f < 0) to
the left and inclined 30◦ upwards from the horizontal. Thus in this range of α, the
behaviour of all solutions of the ODE (5.4) should be much like those given in the
preceding section (with α corresponding to 2/(β + 2)).

Now consider the range 2
3 < α < 1. As f → 0, the f2α−2 term in (5.4) is negligible

and hence

Z(f) ∼ −i
(

3
2f
)2/3

+
1
α
fα, f → 0, (5.9)

which is a flow in a corner of 120◦ with the free surface asymptotically vertical. As
f →∞, the dY/df term is not negligible and hence

Z(f) ∼ 1
α
fα − if2−2α, f →∞, (5.10)

which is the requisite corner flow of απ radians but in this case it only occurs in the
far field and so is of less interest as a model of bow flow.

(b ) Numerical integration
To solve (5.4) numerically, we write it as

dY
df

=
[
− 1
Y
− f2α−2

]1/2

, (5.11)

and then use a variable-step Runge–Kutta integration scheme to find Y (f) along any
path in the complex f -plane which starts at the initial point f = 0. In particular,
integration along constant φ or ψ lines are of interest, as these give equipotentials
and streamlines, respectively.

However, the initial condition (5.1) cannot be applied precisely, as the right hand
side of (5.11) is singular there. Thus the integration is commenced at some small real
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–4
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0

–4 –2 0 2 4

Figure 7. Flow obtained by solving the ODE for α = 0.55.

–3
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–1

0

–4 –3 –2 –1 0 1 432

Figure 8. Flow obtained by solving the ODE for α = 0.463.

positive f , with Y (f) being given by an asymptotic series (the first term of which is
given in (5.6)). Furthermore, in order to maintain accuracy, the path of integration
must not get too close to the origin and hence should start away from the origin,
preferably along the real axis (that is, on the free surface).

The square root in (5.11) is evaluated so that it is initially real and negative and
then as the integration proceeds the correct branch is chosen by requiring that dY/df
be continuous.

By the above procedure we obtain the solutions shown in figures 7 (α = 0.55) and 8
(α = 0.463). Vanden Broeck et al. (1978) used similar tactics to solve the case when
α = 1/2. The flows are qualitatively similar to the analytic solutions described in the
previous section. An interesting case is α = 0.463, where the solid body possesses an
underwater bulge reminiscent of the bow-shape of large ocean going vessels.

(c ) Singularities
For values of α significantly less than 1

2 , say α = 1
4 , the numerical integration

of (5.4) shows that some streamlines cross. Furthermore, there exist closed paths
of integration lying in Y < 0 for which the corresponding path in the Z-plane is
open. Both these facts show that there is a singularity in Y (f) for ψ < 0. Since the
singularity must be excluded from the fluid flow, ψ can no longer extend to −∞.
This trait is again very similar to some of the solutions in the previous section.

However, determining the value of α at which the singularity moves into the fluid
flow is much more difficult here. First, we make the transformation

Y (f) = −f2/3u(η), (5.12)
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Figure 9. A plot of − Im(η∗) versus the parameter α, where η∗ is the location of a singularity in
the complex η-plane. When, at about α = 0.462, Im(η∗) crosses −π, the singularity moves into
the fluid flow field.

η = log f, (5.13)
and find that u(η) must satisfy

1
u
−
(

2
3
u+

du
dη

)2

= e2(α−2/3)η. (5.14)

Second, we numerically integrate (5.11) as accurately as possible to some real f0 = eη0

to obtain an accurate value for u0 = u(η0). Then we calculate the Taylor series of u as
a function of η about the point η0 using the differential equation (5.14). Typically, up
to 30 coefficients in the Taylor series could be found before numerical error became
significant (using η0 = 0 and η0 = 1).

The transformation (5.13) maps the singularity due to the stagnation point at
f = 0 to infinity in the η-plane and so the Taylor series of u(η) will now have its
radius of convergence limited by the nearest singularity to η0 in the η-plane. The
position and nature of this singularity may be found by an extension (described in
the Appendix of the paper by Mercer & Roberts 1990) of the procedure of Domb
& Sykes (1957). Plotted in figure 9 is the result of interest, namely the value of
− arg(f∗) at which a singularity occurs (i.e. the imaginary part of η∗). Since the
fluid domain corresponds to −π < arg(f) 6 0, this figure shows that for α > 0.462
the singularity is outside the fluid domain, but for α < 0.462 it has moved through
the body and into the fluid.

There may be other singularities in the fluid domain, but none were detected in
the numerical integration. Thus, bow-like flows can be found for bows at a lesser
angle than 90◦ to the horizontal, here down to 83◦.
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